(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(X)) → mark(g(h(f(X))))
active(f(X)) → f(active(X))
active(h(X)) → h(active(X))
f(mark(X)) → mark(f(X))
h(mark(X)) → mark(h(X))
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
proper(h(X)) → h(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
h(ok(X)) → ok(h(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2]x1
POL(F(x1)) = 0
POL(G(x1)) = [2]x1
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = 0
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = [4]x1
POL(h(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = [3]
POL(TOP(x1)) = [4]x1
POL(active(x1)) = [2]
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = [2]x1
POL(h(x1)) = x1
POL(mark(x1)) = [1]
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [1]
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = 0
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = [4]x1
POL(h(x1)) = [4]x1
POL(mark(x1)) = 0
POL(ok(x1)) = [1]
POL(proper(x1)) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = [2] + [2]x1
POL(TOP(x1)) = [2]x12
POL(active(x1)) = [3] + x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = [1] + x1
POL(g(x1)) = x1
POL(h(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [3] + x1
POL(proper(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = x1
POL(TOP(x1)) = x12
POL(active(x1)) = [3] + x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(h(x1)) = [2] + x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [3] + x1
POL(proper(x1)) = x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0)) → c4(F(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(F(x1)) = [2]x12
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = x1 + x12
POL(TOP(x1)) = x1 + x12
POL(active(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = x1 + [3]x12
POL(g(x1)) = x1
POL(h(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2] + [2]x1
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x12
POL(active(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = [1] + [2]x1
POL(g(x1)) = x1
POL(h(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [1] + [2]x1
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = [1]
POL(PROPER(x1)) = [1] + x1
POL(TOP(x1)) = [2]x12
POL(active(x1)) = [2] + x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(h(x1)) = [1] + x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [3] + x1
POL(proper(x1)) = x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = [2]x1
POL(TOP(x1)) = [2]x12
POL(active(x1)) = [2] + x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = [1] + x1
POL(h(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0)) →
c(
G(
h(
f(
z0))),
H(
f(
z0)),
F(
z0)) by
ACTIVE(f(x0)) → c(F(x0))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0)) →
c1(
F(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(f(x0)) → c1
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(f(x0)) → c1
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(z0)) → c(G(h(f(z0))), H(f(z0)), F(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c, c1, c1
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(f(x0)) → c1
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, G, TOP
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c, c1
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
h(
z0)) →
c2(
H(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(x0)) → c2
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(x0)) → c2
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
ACTIVE(h(z0)) → c2(H(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
F, H, PROPER, G, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c, c1, c2, c2
(29) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(h(x0)) → c2
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
F, H, PROPER, G, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c, c1, c2
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0)) →
c7(
F(
proper(
z0)),
PROPER(
z0)) by
PROPER(f(f(z0))) → c7(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c7(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(h(z0))) → c7(F(h(proper(z0))), PROPER(h(z0)))
PROPER(f(x0)) → c7
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
PROPER(f(f(z0))) → c7(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c7(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(h(z0))) → c7(F(h(proper(z0))), PROPER(h(z0)))
PROPER(f(x0)) → c7
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
PROPER(f(z0)) → c7(F(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
F, H, PROPER, G, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c8, c9, c10, c11, c12, c, c1, c2, c7, c7
(33) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(f(x0)) → c7
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
PROPER(f(f(z0))) → c7(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c7(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(h(z0))) → c7(F(h(proper(z0))), PROPER(h(z0)))
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
F, H, PROPER, G, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c8, c9, c10, c11, c12, c, c1, c2, c7
(35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
g(
z0)) →
c8(
G(
proper(
z0)),
PROPER(
z0)) by
PROPER(g(f(z0))) → c8(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c8(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(x0)) → c8
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
PROPER(f(f(z0))) → c7(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c7(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(h(z0))) → c7(F(h(proper(z0))), PROPER(h(z0)))
PROPER(g(f(z0))) → c8(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c8(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(x0)) → c8
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
F, H, PROPER, G, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c9, c10, c11, c12, c, c1, c2, c7, c8, c8
(37) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(g(x0)) → c8
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
PROPER(f(f(z0))) → c7(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c7(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(h(z0))) → c7(F(h(proper(z0))), PROPER(h(z0)))
PROPER(g(f(z0))) → c8(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c8(G(h(proper(z0))), PROPER(h(z0)))
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
F, H, PROPER, G, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c9, c10, c11, c12, c, c1, c2, c7, c8
(39) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
h(
z0)) →
c9(
H(
proper(
z0)),
PROPER(
z0)) by
PROPER(h(f(z0))) → c9(H(f(proper(z0))), PROPER(f(z0)))
PROPER(h(g(z0))) → c9(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c9(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(x0)) → c9
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
PROPER(f(f(z0))) → c7(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c7(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(h(z0))) → c7(F(h(proper(z0))), PROPER(h(z0)))
PROPER(g(f(z0))) → c8(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c8(G(h(proper(z0))), PROPER(h(z0)))
PROPER(h(f(z0))) → c9(H(f(proper(z0))), PROPER(f(z0)))
PROPER(h(g(z0))) → c9(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c9(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(x0)) → c9
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c9(H(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
F, H, G, TOP, ACTIVE, PROPER
Compound Symbols:
c3, c4, c5, c6, c10, c11, c12, c, c1, c2, c7, c8, c9, c9
(41) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(h(x0)) → c9
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
G(ok(z0)) → c10(G(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0)) → c(F(x0))
ACTIVE(f(f(z0))) → c1(F(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(h(z0))) → c1(F(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0))) → c2(H(mark(g(h(f(z0))))), ACTIVE(f(z0)))
ACTIVE(h(f(z0))) → c2(H(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(h(h(z0))) → c2(H(h(active(z0))), ACTIVE(h(z0)))
PROPER(f(f(z0))) → c7(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c7(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(h(z0))) → c7(F(h(proper(z0))), PROPER(h(z0)))
PROPER(g(f(z0))) → c8(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c8(G(h(proper(z0))), PROPER(h(z0)))
PROPER(h(f(z0))) → c9(H(f(proper(z0))), PROPER(f(z0)))
PROPER(h(g(z0))) → c9(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c9(H(h(proper(z0))), PROPER(h(z0)))
S tuples:
F(mark(z0)) → c3(F(z0))
H(mark(z0)) → c5(H(z0))
H(ok(z0)) → c6(H(z0))
K tuples:
G(ok(z0)) → c10(G(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
F(ok(z0)) → c4(F(z0))
Defined Rule Symbols:
active, f, h, proper, g, top
Defined Pair Symbols:
F, H, G, TOP, ACTIVE, PROPER
Compound Symbols:
c3, c4, c5, c6, c10, c11, c12, c, c1, c2, c7, c8, c9
(43) CpxTrsMatchBoundsProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1.
The certificate found is represented by the following graph.
Start state: 3240
Accept states: [3241, 3242, 3243, 3244, 3245, 3246]
Transitions:
3240→3241[active_1|0]
3240→3242[f_1|0]
3240→3243[h_1|0]
3240→3244[proper_1|0]
3240→3245[g_1|0]
3240→3246[top_1|0]
3240→3240[mark_1|0, ok_1|0]
3240→3247[f_1|1]
3240→3248[h_1|1]
3240→3249[proper_1|1]
3240→3250[f_1|1]
3240→3251[h_1|1]
3240→3252[g_1|1]
3240→3253[active_1|1]
3247→3242[mark_1|1]
3247→3247[mark_1|1]
3247→3250[mark_1|1]
3248→3243[mark_1|1]
3248→3248[mark_1|1]
3248→3251[mark_1|1]
3249→3246[top_1|1]
3250→3242[ok_1|1]
3250→3247[ok_1|1]
3250→3250[ok_1|1]
3251→3243[ok_1|1]
3251→3248[ok_1|1]
3251→3251[ok_1|1]
3252→3245[ok_1|1]
3252→3252[ok_1|1]
3253→3246[top_1|1]
(44) BOUNDS(O(1), O(n^1))